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Abstract. Exact bounds are obtained for the quenched free energy of a polymer with random
hydrophobicities in the presence of an interface separating a polar from a non-polar solvent. The
polymer may be ideal or have steric self-interactions. The bounds allow one to prove that a ‘neutral’
random polymer is localized near the interface at any temperature, whereas a ‘non-neutral’ chain
is shown to undergo a delocalization transition at a finite temperature. These results are valid for
a quite generala priori probability distribution for both independent and correlated hydrophobic
charges. As a particular case we consider randomAB-copolymers and confirm recent numerical
studies.

The statistical behaviour of heteropolymers has been intensively studied in recent years [1–7].
They model random copolymers [2, 3] and to some extent protein folding [1]. For example,
a chain composed of hydrophobic and hydrophilic (polar or charged) components in a polar
(aqueous) solvent evolves toward conformations where the hydrophobic part is buried in order
to avoid water, whereas the polar part is mainly exposed to the solvent [8]. This is what
commonly happens to proteins and it makes them soluble in aqueous solutions. However,
other proteins (e.g. structural proteins) are almost insoluble under physiological conditions
and prefer to form aggregates [8]. Many of the proteins which are insoluble in water are
segregated into membranes which have a lipid bilayer structure [8]. Membrane proteins
have a biological importance at least as great as those which are water soluble. Usually one
distinguishes integral and non-integral membrane proteins according to whether the protein
is most immersed in the lipid bilayers or simply anchored to the membrane, respectively (in
the latter case the protein is essentially water soluble) [8]. An analogous situation occurs for
copolymers at interfaces separating two immiscible fluids. If the solvents are selective (i.e.
poor for one of the two species and good for another),AB-copolymers are found to stabilize
the interface [9]. Moreover, random copolymers have been claimed to be more effective in
carrying out this re-enforcement action [10].

The simplest theoretical approach to the above problems has been proposed by Garel
et al [2]. In the case of membrane proteins the finite layer of lipidic environment is modelled
as an infinite semi-space. Though a quite rough approximation, this is the simplest attempt in
capturing the relevant features due to the competition of different selective effects [11].

We study a lattice discretized version of their model. The nodes of anN links chain
occupy the sitesEri = (xi1, . . . , xid), i = 0, . . . , N of a d-dimensional hypercubic lattice. A
flat interface passing through the origin and perpendicular to theEu = (1, . . . ,1) direction
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separates a polar (e.g. water), on theEu · Er > 0 side, from a nonpolar (e.g. oil or air), on the
Eu · Er < 0 side, solvent. Theith monomer interacts with the solvent through its chargeqi (the
monomer is hydrophilic ifqi > 0, hydrophobic ifqi < 0) and contributes to the energy with a
term−qi sgn(Eu · Eri)†. For simplicity we can associate the charge to the link between adjacent
positions on the chain instead of that to the single monomer.

The partition function of the model for a chainW starting at positionEr0 ≡ Er is

Z(Er, {qi}) =
∑
W :Er→.

exp

{
β

N∑
i=1

qisgn(Eu · Eri)
}

(1)

whereβ−1 = kBT . If one sums over non-interacting (ideal) chains, then the lattice version of
the model introduced in [2] is recovered. We also consider the more physical case where steric
interaction among monomers does not allow for multiple occupancy of lattice nodes, studied
for a particular case in [3].

The free-energy density of the system readsf (Er, β) = − limN→∞ 1
βN

lnZ(Er, {qi}), where
· · · denotes the quenched average over the distribution of the charges{qi}. In the following we
assume that{qi} are independent random variables having a Gaussian distribution of the form

P(qi) = 1√
2π12

exp

[
− (qi − q0)

2

212

]
. (2)

More general cases will be treated at the end. In particular, considering charges not
independently distributed is of interest fordesignedsequences, as occurs for real proteins.

We show that for a neutral chain (q0 = 0) f (0, β) < f (Er, β) with |Er| > N , in the large
N limit, and for allβ. The same holds also forq0 6= 0 if β > βupper (|q0|,1) with βupper → 0
if |q0|

1
→ 0. This implies that the chain is localized around the interface at any temperature if

q0 = 0, and at sufficently low temperature ifq0 6= 0. The proof is rigorous for the ideal chain,
whereas for the self-avoiding case only a mild and well accepted hypothesis on the asymptotic
behaviour of the entropy is needed. Whenq0 6= 0 a rigorous lower bound on the free energy
for both the ideal and the self-avoiding chain allows one to determine aβlower (|q0|,1) below
which the chain is delocalized.

We first consider the ideal chain case and then explain the modifications necessary to
extend the results to self-avoiding chains.

Ideal chain. For clarity we derive the bounds in thed = 1 case. The general case does not
contain any further difficulty‡. Let us first consider initial positions far from the interface in
the favourable solvent,x > N if q0 > 0 or x 6 −N if q0 < 0. Under these assumptions all
chains remain on the same side, implying that sgn(xi) = 1 (or sgn(xi) = −1 respectively) for
all i. Upon averaging over the charge distribution, we obtain the free-energy density of a walk
in the favourable solvent:

f ∗ = − 1

β
ln 2− |q0|. (3)

We give an upper bound to the free energy as follows. Consider only chains made up of
blobs ofk steps, withk even. Bringing a blob in its globally favoured side leads to an energy

† The case where the energy is−λ+qi andλ−qi (λ+,− > 0) whenEu · Eri > 0 andEu · Eri < 0, respectively, is readily
reduced to the one treated here apart from an additive constant and a redefinition of the ‘charges’q ′i = λ++λ−

2 qi .
‡ Notice that in the off-lattice model of [2] the entropy has only a harmonic term (Edwards functional) and thus the
d-dimensional case reduces trivially to thed = 1 case. In the lattice model considered here this is no longer true.
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contribution of the formHj th blob= −|
∑k

i=1 qk(j−1)+i |, so that

Z(x = 0, {qi}) > (Ck) Nk exp

{
β

N
k∑

j=1

∣∣∣∣ k∑
i=1

qk(j−1)+i

∣∣∣∣}
whereCk is the number ofk-step chains starting and ending in the origin and remaining on
the same side. In the one-dimensional case it is easy to exactly determineCk. It turns out
Ck = 1

k
2 +1

(
k
k
2

)
, so that, by using the Stirling formula, the asymptotic resultCk ∼ 2kk−

3
2 is found

(in d dimensionsCk ∼ (2d)kk− d+2
2 [12]). The upper bound on the free energy is then:

f (0, β) 6 − 1

β

lnCk
k
− 1

k

∣∣∣∣ k∑
i=1

qi

∣∣∣∣ (4)

and, by using equation (2), we obtain:

1f = f (0, β)− f ∗ 6 hq0(k, β) ≡
1

β

[
ln 2− lnCk

k

]
− |q0|G

(√
k|q0|√
21

)
(5)

where the scaling functionG is given by

G(x) = 1√
π

1

x
e−x

2 − [1− erf(x)]. (6)

G(x) is a positive decreasing monotonic function for positive arguments.
We consider, separately, the neutral and theq0 6= 0 cases. In the neutral case it turns out

that the chain is always localized at the interface. In fact, ifq0 = 0 we have

1f 6 h0(k, β) = 1

β

[
ln 2− lnCk

k

]
−
√

2

π
1

1√
k
. (7)

It is easy to see that for anyβ there exists a valuek(β) such thath0(k, β) < 0 fork > k(β). For
example, at high temperaturek(β) ∼ [ln(β1)]2(β1)−2. This shows that at any temperature
a neutral random chain is always adsorbed by the interface.

In the non-neutral case withk = 2, one has1f < 0 if

β > βupper = ln 2

|q0|G
(
|q0|
1

) . (8)

The limit limk→∞ hq0(k, β) = 0+ does not allow one to deduce the existence of a negative
minimum in k, so that the previous argument, showing that the neutral chain is always
localized, does not hold forq0 6= 0. Equation (8) proves localization at sufficiently low
temperatures. For|q0| � 1, it yieldsβupper =

√
π ln 2
1

, and in the opposite regime1 � |q0|,
βupper = 2

√
π ln 2e

|q0|2
12 |q0|2

13 . In the limit |q0|/1� 1 we can give a better estimate forβupper ,
such thatβupper → 0 as|q0| → 0, by considering a larger blob sizek = 2x2

0(1/|q0|)2, where
x0� |q0|/1 is fixed:

βupper = 3

2x2
0G(x0)

ln(
√

2x01/|q0|) |q0|
12

. (9)

We now look for a lower bound onf for all chain initial positions. If, for example,q0 > 0,
the preferred side is the right one. Consider then the starting point atx = N − k (0< k 6 N )
and letgE , withE some subset of the lastk steps of the walk (0< |E| 6 k with |E| the number
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of elements inE), be the number of walks having the steps belonging toE in the unfavourable
side. Upon definingGk =

∑
E gE (Gk < 2k) one has

Z(x = N − k, {qi}) = (2N −Gk)e
β
∑N

i=1 qi + eβ
∑N

i=1 qi
∑
E

gEe−2β
∑

i∈E qi (10)

so that, by using the inequality lnx > ln x and averaging over the charge distribution, one
obtains

f (N − k) > f ∗ − 1

βN
ln

[
1 +

∑
E

gE
a(1, qo, β)

|E| − 1

2N

]
with a(1, qo, β) = exp[212β2 − 2βq0]. This equation and its analogue in theq0 < 0 case
show that there is a delocalization temperature

βlower = |q0|
12

(11)

such that, ifβ < βlower ,f (|N−k|) > f ∗ for all k and the chain delocalizes. This argument can
be extended to thed-dimensional case, in which 16 Gk < (2d)k, Z∗d (qi) = (2d)Neβ

∑N
=1 qi

andf ∗d = − 1
β

ln 2d − |q0|.
The bounds we have proved above allow one to conclude that there is a critical valueβc

such that for values ofβ smaller thanβc the chain is delocalized in the favourable solvent,
while for larger values it is adsorbed by the interface, with the estimatesβlower < βc < βupper
(it is easy to verify thatβlower < βupper ). The lower bound (11) and the upper bound (9),
in the limit |q0|/1 � 1, show the same behaviour found by using both an Imry–Ma-type
argument [2] and variational approaches [5,7].

Self-avoiding chain. All the results shown for a random chain can be readily generalized
for a self-avoiding chain. Namely, a neutral chain is localized at all temperatures, whereas a
non-neutral chain undergoes a localization transition at some critical temperatureβc.

The delocalization temperature,βlower , can be derived in exactly the same way, since
the division of walks into classes according to the number of steps made in the unfavourable
solvent does not depend on the self-avoidance constraint.

The upper bounds on the free energy, which allow one to prove chain localization, instead
requires some refinements with respect to the previous case. While the energy term is computed
in the same way as before, the entropy term is different. First, the connective constant
(κ = 2d for a random walk ind dimensions) is different. We recall that the existence of
the connective constant,κ = limN→∞ ln SN/N , for self-avoiding walks (SAW) has been
rigorously established [13] (SN is the total number ofN -steps SAW starting from the same
site). The subleading correction of the formSN ' κNNγ−1 is widely agreed upon, although
not rigorously proved [12]. Secondly, we introduce the notion ofloop, following e.g. [14],
and consider only walks made up ofN/k blobs, each blob being ak-loop, in such a way that
different blobs can be embedded independently, as well as for a random chain. AnN -loop is
anN -steps SAW, starting and ending on the interface, which always remains in the same half-
space, with the further conditionx01−x02 6 xi1−xi2 < xN1−xN2∀i. It has been proved [15]
that the free-energy density of loops is the same as for SAW,κl ≡ limN→∞ lnLN/N = κ,
whereLN is the number ofN -loops. The subleading correction is usually assumed in the same
form as for the number of SAW:

LN ' κNNγs−1. (12)
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These considerations are sufficient to generalize the previous results to the self-avoiding
case, yielding the following bounds for the critical temperature:

ln κ

|q0|G
(√

2|q0|
1

) 6 βc 6 |q0|
12

(13)

which do not depend on the assumption (12) and is therefore rigorous. Again, in the limit
|q0|/1� 1 a better estimateβupper can be derived by using equation (12):

βupper = 1− γs
x2

0G(x0)
ln(
√

2x01/|q0|) |q0|
12

. (14)

Generic probability distribution. Up to now we have considered the hydrophobic charges as
independently distributed Gaussian random variables. Actually, the results we have proved do
not depend on this assumption. We will briefly sketch this in a few cases [12].

The argument showing localization at any temperature for a neutral chain holds true,

both for random and self-avoiding chains, if|∑k
i=1 qi | '

√
k ask → ∞. The central limit

theorem ensures this for independent random variables having a generic probability distribution
with finite variance and null mean. In the non-neutral case, the existence of a delocalization
transition can be proved e.g. for a bimodal distribution. This corresponds to the more realistic
case of two kinds of monomers, one hydrophilic and the other hydrophobic. We thus consider
the generic bimodal distribution [16]†:

P(qi) = αδ(qi − q+) + (1− α)δ(qi + q−) (15)

with q+, q− > 0. The probability distribution (15) has three independent parameters, and
fixing the average chargeq0 = α(q+ + q−) − q− and the variance1 = √α(1− α)(q+ + q−)
we are left with one free parameter. It is interesting to report the delocalization temperature
βlower , which provides a good estimate for the critical temperature in the previous cases:

βbimlower =
√
α (1− α)

21

∣∣∣∣ln [1 +
q0√

α (1− α)1− (1− α) q0

]∣∣∣∣ .
Notice that in the limit of nearly neutral chain (|q0| � 1) we getβdc ' |q0|

212 , which is the
same function of|q0| and1 as in the Gaussian case, suggesting the existence of a universal
behaviour. In the limit of nearly homogeneous chain (1� |q0|which impliesα ' 0 orα ' 1)
insteadβbimlower = 1

2(q++q−)
| ln[ α

1−α
q+

q−
]| diverges logarithmically in contrast with the Gaussian

case.
We now consider the case in which the hydrophobic charges{qi} are not independent

random variables, but are Gaussianly distributed withqi = q0∀i, qiqj − qi qj = M−1
ij .

We assumeM−1
ii = 12∀i, in analogy with the non-correlated case, and also translational

invariance along the chain for the correlation matrix:Mij = b(|i − j |). One can prove that
if long-range correlations decay exponentially or even algebraically the neutral chain is again
localized at all temperatures. In fact, by assuming an algebraic decay,b(r) ' r−η, it turns out

that |∑k
i=1 qi | ' kδ/2 with δ = min(η, 1). Only if correlations are so strong that they do not

vanish along the chain (η = 0), does the chain not localize at all temperatures.
In the non-neutral case the existence of the transition can be proved. For example the

estimate of the delocalization temperature is

βcorrlower = min
E

{
|E||q0|∑
i,j∈E M

−1
ij

}
. (16)

† Some previous exact results for the bimodal distribution and only for ideal chains were also obtained by Sinai and
Bolthausen and den Hollander [16].
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If the charges are positively correlated (M−1
ij > 0 for i 6= j ), chain localization is more

favoured than in the non-correlated case, whereas if charges are anti-correlated (M−1
ij < 0 for

i 6= j ) it is less favoured.

Asymmetric interface potentials.Finally, we extend our demonstrations to the randomAB-
copolymers studied by Sommeret al [3]. Their model corresponds to consider the following
Hamiltonian:

H =
∑
i

|qi |[λθ(qi)θ(−Eu · Eri) + θ(−qi)θ(Eu · Eri)] (17)

with the charges distributed according to equation (15) withα = 1
2 andq+ = q− (|λ − 1|

measures the potential asymmetry). Such anAB-copolymer (equation (17)) is equivalent to a
non-neutral chain in symmetric potentials (λ = 1), a case that we have already discussed. We
have proved the existence of a delocalization transition for a neutral chain also in the Gaussian
case. For both distributions, the delocalization temperature shows the behaviourβlower ' |λ−1|

1

in the limit of nearly symmetric potentials (λ ' 1), in agreement with the scaling law and the
numerical results found in [3]. In contrast, in the highly asymmetric cases (small and largeλ)
different asymptotic behaviours forβlower occur†.

To conclude, in this letter we have proved several exact results on random heteropolymers
in the presence of an interface. Namely, a neutral chain is localized at all temperatures,
whereas a charged chain delocalizes at a finite temperature. The results are quite general and
hold for ideal and self-avoiding chains, Gaussian and bimodal distribution with independent
and correlated charges. Furthermore, our lower bounds for the transition temperature confirm
previous estimates.

We would like to thank Jayanth Banavar, Cristian Micheletti and Flavio Seno for useful
discussion and ongoing collaboration, and Enzo Orlandini for bringing [16] to our attention.
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