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Abstract. Exact bounds are obtained for the quenched free energy of a polymer with random
hydrophobicities in the presence of an interface separating a polar from a non-polar solvent. The
polymer may be ideal or have steric self-interactions. The bounds allow one to prove that a ‘neutral’
random polymer is localized near the interface at any temperature, whereas a ‘non-neutral’ chain
is shown to undergo a delocalization transition at a finite temperature. These results are valid for
a quite generad priori probability distribution for both independent and correlated hydrophobic
charges. As a particular case we consider rand@topolymers and confirm recent numerical
studies.

The statistical behaviour of heteropolymers has been intensively studied in recent years [1-7].
They model random copolymers [2, 3] and to some extent protein folding [1]. For example,
a chain composed of hydrophobic and hydrophilic (polar or charged) components in a polar
(aqueous) solvent evolves toward conformations where the hydrophobic part is buried in order
to avoid water, whereas the polar part is mainly exposed to the solvent [8]. This is what
commonly happens to proteins and it makes them soluble in agqueous solutions. However,
other proteins (e.g. structural proteins) are almost insoluble under physiological conditions
and prefer to form aggregates [8]. Many of the proteins which are insoluble in water are
segregated into membranes which have a lipid bilayer structure [8]. Membrane proteins
have a biological importance at least as great as those which are water soluble. Usually one
distinguishes integral and non-integral membrane proteins according to whether the protein
is most immersed in the lipid bilayers or simply anchored to the membrane, respectively (in
the latter case the protein is essentially water soluble) [8]. An analogous situation occurs for
copolymers at interfaces separating two immiscible fluids. If the solvents are selective (i.e.
poor for one of the two species and good for anoth&B.copolymers are found to stabilize

the interface [9]. Moreover, random copolymers have been claimed to be more effective in
carrying out this re-enforcement action [10].

The simplest theoretical approach to the above problems has been proposed by Garel
et al[2]. In the case of membrane proteins the finite layer of lipidic environment is modelled
as an infinite semi-space. Though a quite rough approximation, this is the simplest attempt in
capturing the relevant features due to the competition of different selective effects [11].

We study a lattice discretized version of their model. The nodes a¥ dimks chain
occupy the siteg; = (x;1,...,x4),i =0, ..., N of ad-dimensional hypercubic lattice. A
flat interface passing through the origin and perpendicular taitke (1, ..., 1) direction
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separates a polar (e.g. water), on ther > 0 side, from a nonpolar (e.g. oil or air), on the
u -7 < 0 side, solvent. Theh monomer interacts with the solvent through its chaggghe
monomer is hydrophilic if; > 0, hydrophobic if;; < 0) and contributes to the energy with a
term—gq; sgn(u - ;). For simplicity we can associate the charge to the link between adjacent
positions on the chain instead of that to the single monomer.

The partition function of the model for a chal¥i starting at positioriy = 7 is

N
ZEAghH = ) eXp{ﬂ Zqisgn(w,-)} (1)
i=1

Wir—.

whereg~! = kzT. If one sums over non-interacting (ideal) chains, then the lattice version of
the model introduced in [2] is recovered. We also consider the more physical case where steric
interaction among monomers does not allow for multiple occupancy of lattice nodes, studied
for a particular case in [3].

The free-energy density of the system refids 8) = — limy_. o ﬂiNIn Z(#,{q:}), where
- denotes the quenched average over the distribution of the cHargel the following we
assume thafly;} are independent random variables having a Gaussian distribution of the form

2
1 exp[— (gi — qo0) } .

2w A? 2A2

More general cases will be treated at the end. In particular, considering charges not
independently distributed is of interest fdesignedsequences, as occurs for real proteins.

We show that for a neutral chaigo(= 0) f(0, 8) < f(r, B) with |[F| > N, in the large
N limit, and for all 8. The same holds also fgs # 0 if 8 > Bupper (Ig0l, A) With B,pper — O
if % — 0. This implies that the chain is localized around the interface at any temperature if
go = 0, and at sufficently low temperaturegf £ 0. The proof is rigorous for the ideal chain,
whereas for the self-avoiding case only a mild and well accepted hypothesis on the asymptotic
behaviour of the entropy is needed. Whgn# 0 a rigorous lower bound on the free energy
for both the ideal and the self-avoiding chain allows one to determig,a (|qol, A) below
which the chain is delocalized.

We first consider the ideal chain case and then explain the modifications necessary to
extend the results to self-avoiding chains.

P(g) = 2

Ideal chain. For clarity we derive the bounds in thle= 1 case. The general case does not
contain any further difficulty}. Let us first consider initial positions far from the interface in
the favourable solven, > N if go > 0 orx < —N if go < 0. Under these assumptions all
chains remain on the same side, implying that(sgn= 1 (or sgrx;) = —1 respectively) for

all i. Upon averaging over the charge distribution, we obtain the free-energy density of a walk
in the favourable solvent:

1
f*=—E|n2—|qo|- ®3)

We give an upper bound to the free energy as follows. Consider only chains made up of
blobs ofk steps, withk even. Bringing a blob in its globally favoured side leads to an energy

t The case where the energy-is.+¢; andi_¢; (A+— > O) wheni - 7; > O andiu - 7; < O, respectlvely is readily
reduced to the one treated here apart from an additive constant and a redefinition of the ‘cHasg “* i

T Notice that in the off-lattice model of [2] the entropy has only a harmonic term (Edwards functlonal) and thus the
d-dimensional case reduces trivially to tthie= 1 case. In the lattice model considered here this is no longer true.
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}

whereC;, is the number ok-step chains starting and ending in the origin and remaining on
the same side. In the one-dimensional case it is easy to exactly detefmirieturns out
Cr = = (£), so that, by using the Stirling formula, the asymptotic result- 242 is found

=7 k
5+1%3

contribution of the form#H i piob = —| Zf‘:l gr(j—1)+i], SO that

k

'Mk\z

Z(x =0, {g:}) > (€T exp{ﬂ

Gk(j—1)+i
1

j=1

d+2

(in d dimensionC; ~ (2d)*k—" [12]). The upper bound on the free energy is then:

1lin Cy 1
f(O,ﬂ)\—E % : gi 4)
and, by using equation (2), we obtain:
1 InCy Vklqol
Af=f0,8) — f"<hpk p)==|IN2— ——| —|q0|G 5
f=r0.8—-f a0k, B) ﬂ[n k] |q0l (ﬁA (5)
where the scaling functio@ is given by
11 .
Gx) = ﬁ;e — [1 — el’f(x)]. (6)

G (x) is a positive decreasing monotonic function for positive arguments.
We consider, separately, the neutral andg§e 0 cases. In the neutral case it turns out
that the chain is always localized at the interface. In fagefy #= 0 we have

]—@A%. @)

Itis easy to see that for amjthere exists a valug(8) such thatig(k, ) < Ofork > k(B). For
example, at high temperatuk€s) ~ [In(8A)]?(8A)~2. This shows that at any temperature
a neutral random chain is always adsorbed by the interface.

In the non-neutral case with= 2, one has\f < O if

In2
90l (%)

The limit lim,_, . k4 (k, ) = 0. does not allow one to deduce the existence of a negative
minimum in k, so that the previous argument, showing that the neutral chain is always
localized, does not hold fagy # 0. Equation (8) proves localization at sufficiently low

temperatures. Fago| < A, it yields B,,per = @, and in the opposite regime < |qol,

- 1 |an
Af<ho(k,ﬂ)—g[ln2— k

:3 > ,Bupper = (8)

laol?
Bupper = 24/ In 2esr ‘%!f. In the limit |go|/A < 1 we can give a better estimate {8y,
such tha,,y., — 0 asl|qo| — 0, by considering a larger blob size= 2x2(A /|go|)2, where
Xo > |6]o|/A is fixed:

g0l

|n(~/§>CoA/|qu)F-

upper — A 5~ < 9
Puner = 5260 ©)
We now look for a lower bound offi for all chain initial positions. If, for exampleg > 0,
the preferred side is the right one. Consider then the starting pointalVv — k (0 < k£ < N)
and letg g, with E some subset of the lassteps of the walk (G< | E| < k with | E| the number
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of elements irE), be the number of walks having the steps belonging o the unfavourable
side. Upon definings, = Y, gr (Gx < 2¥) one has

Zr=N—k g} = @ — G Tt +Lna Y ge¥Xicd (10)
E

so that, by using the inequality in > Inx and averaging over the charge distribution, one
obtains

L1 a(A, g, B =1
JIN=k) = f —ﬁ—Nm[l"';gE o :|

with a(A, q,, B) = exp[2A?B2 — 2Bqo]. This equation and its analogue in thg < 0 case
show that there is a delocalization temperature

,Blower = |Z_02| (11)
suchthat, if8 < Biouwer, f(IN—k|) > f*forall k and the chain delocalizes. This argumentcan
be extended to thé-dimensional case, in which& G, < (2d)%, Zi(q;) = (2d)Ve’ ha
andf; = —g In2d — |qol.

The bounds we have proved above allow one to conclude that there is a criticaByvalue
such that for values of smaller thang. the chain is delocalized in the favourable solvent,
while for larger values it is adsorbed by the interface, with the estingags < Bc < Bupper
(it is easy to verify thaB,wer < Bupper)- The lower bound (11) and the upper bound (9),
in the limit |go|/A <« 1, show the same behaviour found by using both an Imry—Ma-type
argument [2] and variational approaches [5, 7].

Self-avoiding chain. All the results shown for a random chain can be readily generalized
for a self-avoiding chain. Namely, a neutral chain is localized at all temperatures, whereas a
non-neutral chain undergoes a localization transition at some critical tempesature

The delocalization temperatur§;,...., can be derived in exactly the same way, since
the division of walks into classes according to the number of steps made in the unfavourable
solvent does not depend on the self-avoidance constraint.

The upper bounds on the free energy, which allow one to prove chain localization, instead
requires some refinements with respect to the previous case. While the energy termis computed
in the same way as before, the entropy term is different. First, the connective constant
(« = 2d for a random walk ind dimensions) is different. We recall that the existence of
the connective constant, = limy_ . In Sy /N, for self-avoiding walks (SAW) has been
rigorously established [13]Sf is the total number oN-steps SAW starting from the same
site). The subleading correction of the foffn ~ «¥ N”~1 is widely agreed upon, although
not rigorously proved [12]. Secondly, we introduce the notiooop, following e.g. [14],
and consider only walks made up 8f k blobs, each blob being/&loop, in such a way that
different blobs can be embedded independently, as well as for a random chaNtldap is
an N-steps SAW, starting and ending on the interface, which always remains in the same half-
space, with the further conditio; — xp2 < x;1 —xi2 < xy1— xn2Vi. It has been proved [15]
that the free-energy density of loops is the same as for SAA limy_ o INLy/N = «,
whereL y is the number oiV-loops. The subleading correction is usually assumed in the same
form as for the number of SAW:

Ly ~«VN7»L (12)



Letter to the Editor L279

These considerations are sufficient to generalize the previous results to the self-avoiding
case, yielding the following bounds for the critical temperature:

In« IQOI
T e S < B < (13)
190G (2

which do not depend on the assumption (12) and is therefore rigorous. Again, in the limit
lgol/A < 1 a better estimatg, ., can be derived by using equation (12):

1-y
Buper = 2 (yo) IN(v2x0A /10D~ "’°' (14)

Generic probability distribution. Up to now we have considered the hydrophobic charges as
independently distributed Gaussian random variables. Actually, the results we have proved do
not depend on this assumption. We will briefly sketch this in a few cases [12].

The argument showing localization at any temperature for a neutral chain holds true,

both for random and self-avoiding chains| F'*_; ¢;| ~ vk ask — oo. The central limit
theorem ensures this forindependent random variables having a generic probability distribution
with finite variance and null mean. In the non-neutral case, the existence of a delocalization
transition can be proved e.g. for a bimodal distribution. This corresponds to the more realistic
case of two kinds of monomers, one hydrophilic and the other hydrophobic. We thus consider
the generic bimodal distribution [16]:

P(qi) = ad(qi —q+) + (L —a)d(qi +q-) (15)
with ¢+, ¢— > 0. The probability distribution (15) has three independent parameters, and
fixing the average chargg = a(g+ + ¢_) — g_ and the varianc@ = /o (1 — a)(g+ +g_)
we are left with one free parameter. It is interesting to report the delocalization temperature
Biower» Which provides a good estimate for the critical temperature in the previous cases:

g, = YLD 1 & }
lower — 2A mA l-w qo .

Notice that in the limit of nearly neutral chaifyf| < A) we getg? ~ 2A2’ which is the
same function ofgg| and A as in the Gaussian case, suggesting the existence of a universal
behaviour. Inthe Iimit of nearly homogeneous chain€ |go| whichimpliese >~ 0 ora >~ 1)
insteadpl’m == 5 +q )|I (% ‘1*]| diverges logarithmically in contrast with the Gaussian
case.

We now consider the case in which the hydrophobic chafggsare not independent
random variables, but are Gaussianly distributed with= qoVi, giq; — ¢i ¢; = M,; .

We assumeM;;* = A?vi, in analogy with the non-correlated case, and also translational
invariance along the chain for the correlation matrd;; = b(|i — j|). One can prove that

if long-range correlations decay exponentially or even algebraically the neutral chain is again
localized at all temperatures. In fact, by assuming an algebraic dgeayy ", it turns out

that| >%_, ¢i| ~ k2 with § = min(y, 1). Only if correlations are so strong that they do not
vanish along the chaim (= 0), does the chain not localize at all temperatures.

In the non-neutral case the existence of the transition can be proved. For example the
estimate of the delocalization temperature is

i . E
o — min :M} . (16)
5

-1
i,jeE Mij

T Some previous exact results for the bimodal distribution and only for ideal chains were also obtained by Sinai and
Bolthausen and den Hollander [16].
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If the charges are positively correlatel\zllig1 > 0 fori # j), chain localization is more

favoured than in the non-correlated case, whereas if charges are anti—corngﬂeet © for
i # j)itisless favoured.

Asymmetric interface potentials.Finally, we extend our demonstrations to the randdia
copolymers studied by Sommet al [3]. Their model corresponds to consider the following
Hamiltonian:

M= lg:l[10(q)0(—i - 7;) +6(—q;)0 (i - 77)] (17)

with the charges distributed according to equation (15) witk: % andg. = ¢g_ (JA — 1]
measures the potential asymmetry). SuciBrcopolymer (equation (17)) is equivalent to a
non-neutral chain in symmetric potentials=£ 1), a case that we have already discussed. We
have proved the existence of a delocalization transition for a neutral chain also in the Gaussian
case. Forboth distributions, the delocalization temperature shows the belayjpur- %

in the limit of nearly symmetric potentiala (= 1), in agreement with the scaling law and the
numerical results found in [3]. In contrast, in the highly asymmetric cases (small and.)arge
different asymptotic behaviours f@y,,., occurt.

To conclude, in this letter we have proved several exact results on random heteropolymers
in the presence of an interface. Namely, a neutral chain is localized at all temperatures,
whereas a charged chain delocalizes at a finite temperature. The results are quite general and
hold for ideal and self-avoiding chains, Gaussian and bimodal distribution with independent
and correlated charges. Furthermore, our lower bounds for the transition temperature confirm
previous estimates.

We would like to thank Jayanth Banavar, Cristian Micheletti and Flavio Seno for useful
discussion and ongoing collaboration, and Enzo Orlandini for bringing [16] to our attention.
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